
1.  Introduction
In recent years, within the context of global climate change, the Arctic sea ice has also been undergoing 
rapid changes, and the Arctic has entered the “new Arctic” period (Kwok & Cunningham, 2015; Landrum & 
Holland, 2020). As one of the key processes of sea ice-atmosphere interactions, turbulent exchange plays an 
important role in the evolution of the Arctic sea ice (Andreas et al., 2010). The turbulent sensible and latent heat 
fluxes are essential components of the energy exchange over the sea-ice surface, impacting the sea ice thermody-
namic state, while turbulent momentum flux directly affects the wind speed near the surface (Best et al., 2011) 
and the movement of sea ice. Hence, to understand the state of the Arctic sea ice and lower atmosphere, it 
is essential to accurately quantify turbulent exchanges. The eddy-covariance (EC) technique is considered the 
most direct and prevailing method to measure near-surface atmospheric turbulence (Aubinet et al., 2012; Peltola 
et al., 2021). In the Arctic region, however, the atmospheric surface layer is most often stably stratified, and the 
turbulence is weak and typically characterized by intermittency (Grachev et al., 2005; Lu et al., 2013; Salmond & 
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McKendry, 2005). As a result, the signal derived using the traditional EC method is almost always contaminated 
by nonstationary motions and becomes inappropriate for accurately describing the turbulent exchanges (Cava 
et al., 2019; Ren, Zhang, Wei, Wu, Cai, et al., 2019). Hence, this feature of near-surface motions, for example, 
intermittency, and how it affects the derivation of surface fluxes needs to be explored in the Arctic stable bound-
ary layer.

The definition of turbulence intermittency varies substantially among studies (Acevedo et al., 2006; Coulter & 
Doran, 2002; Mahrt, 2009, 2014; Muschinski et al., 2004). Here, the term intermittency is referred to as “global 
intermittency” in Mahrt (1999). It is defined as the case where eddies are missing or suppressed at a scale that is larger 
than the large turbulent eddies but smaller than mesoscale motions. For this definition, intermittency  is  induced by 
nonstationarities, such as internal gravity waves (Sun et al., 2015), horizontal meandering (Mortarini et al., 2019), 
and microfronts (Mahrt, 2019). These motions have a larger timescale than turbulence and sometimes are collec-
tively referred to as submesoscale motions. Many previous studies have reported the existence of a spectral gap 
between the submesoscale and turbulent parts of the spectrum (Fiedler & Panofsky, 1970; Mahrt, 2007; Mahrt & 
Bou-Zeid, 2020; Wei & Zhang, 2013). Hence, the characteristics of turbulent intermittency can be investigated 
via spectral analysis of EC data. Vickers and Mahrt (2006) developed a multiresolution decomposition method to 
separate the turbulent and submesoscale motions based on multiresolution cospectra, and suggested a variable time 
window to calculate turbulent fluxes using the EC method. Acevedo et al. (2014) also used the same method to 
identify the contributions of submesoscale motions to spectra from six different observation sites. They found that 
turbulent kinetic energy increased exponentially with the time scale in the submesoscale range, and the increased 
rate was larger under weak turbulence situations. Although multiresolution spectra satisfy Reynolds averaging at 
all scales and do not assume periodicity unlike Fourier spectra (Howell & Mahrt, 1997), the multiresolution basis 
set is a wavelet basis set with a constant basis function (Wei et al., 2021). Recently, the Hilbert-Huang transform, 
which satisfies adaptivity, is emerging as a useful tool to study turbulence in view of the advantages of processing 
the nonstationary and nonlinear turbulent signal (Helmis et al., 2015; Huang et al., 2011; Ren, Zhang, Wei, Wu, 
Cai, et al., 2019; Ren, Zhang, Wei, Wu, Liu, et al., 2019; Schmitt et al., 2009; Wei et al., 2017, 2018, 2020).

Previous studies on turbulence intermittency mainly focused on the nocturnal stable boundary layer (Cava et al., 2017; 
Mahrt & Bou-Zeid, 2020; Monahan et al., 2015), and sporadic studies concerned the polar stable boundary layer (van 
den Kroonenberg and Bange, 2007). Allouche et  al.  (2022) investigated the detection, genesis, and modeling of 
turbulence intermittency by using the data collected over the snowpack surface in Utqiagvik, Alaska. They developed 
approaches to detect intermittency based on time series of the turbulence kinetic energy, and improved a flux model 
by introducing the vertical velocity variance in combination with different mixing length scales under different turbu-
lence regimes. In addition, Ansorge and Mellado (2014, 2016) employed direct numerical simulations to reveal the 
effects of intermittency on the applicability of conventional paradigms (such as Monin-Obukhov similarity theory). 
So far, few studies have reported the characteristics of turbulent intermittency under the “new Arctic” sea-ice condi-
tions in the central Arctic. To support the urgent need for understanding and modeling the rapidly changing Arctic 
atmosphere-ice-ocean system, a year-long expedition named the Multidisciplinary drifting Observation for the Study 
of Arctic Climate (MOSAiC) was designed to collect a wealth of observational data. The MOSAiC expedition was 
conducted from October 2019 to September 2020 in the central Arctic. A comprehensive and complementary atmos-
pheric observational program during the expedition provides a unique opportunity to study turbulent intermittency in 
the Arctic stable boundary layer. More details about the atmospheric observations can be found in Shupe et al. (2022).

In this study, we develop a spectral gap identification algorithm based on Hilbert spectra which we use to reveal the 
characteristics of turbulent intermittency over the Arctic sea-ice surface using data collected during the MOSAiC 
expedition. We organize the paper as follows: the observational data and methods are described in Section 2; in 
Section 3, we present the results and discussion about statistical characteristics of intermittent strength, effects 
of the intermittency on turbulent fluxes derived from the EC method, and impacts of the atmospheric boundary 
layer structure on the intermittency; finally, a summary is given in Section 4.

2.  Materials
2.1.  Observation Data

The conventional meteorological and turbulence data are collected from a meteorological tower of 10-m height 
installed over the sea-ice surface during the MOSAiC expedition (Cox et al., 2021, 2023). This tower was located 
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300–600 m from the research vessel Polarstern (Knust, 2017), which served as the base of operations for the 
expedition. Three levels of air temperature and humidity sensors (HMT330, Vaisala, Finland) and sonic anemom-
eters (u-Sonic-3 Cage MP, METEK GmbH, Germany) were installed at the nominal heights of 2, 6, and 10 m on 
the 10-m meteorological tower, and an open-path optical gas analyzer (7500-DS, LI-COR, USA) was fixed at a 
nominal 2-m height for the winter-spring season, and a nominal 6-m height for October 2019 and June-September 
2020. The three-dimensional wind and ultrasonic temperature data collected at the same level as the LI-COR 
7500-DS location are jointly used to derive latent heat flux. The turbulent data observed at a nominal 2-m height 
are used to quantify intermittency. The sampling frequency of fast response instruments (i.e., u-Sonic-3 Cage 
MP anemometer and LI-COR 7500-DS) was at 20 Hz, resampled to 10 Hz. The presence of precipitation was 
measured by an OTT Parsivel2 laser disdrometer deployed by the US Department of Energy (DOE) Atmos-
pheric Radiation Measurement (ARM) program (Wang et al., 2019). Additionally, a processed radiosounding 
data set was used from the Interpolated Sonde value-added product produced by ARM (Jensen et  al.,  2019), 
which was synthesized by multiple sources of sounding data (including radiosondes, ceilometer, and others) 
observed onboard Polarstern. Only the data collected during the period when the vessel passively drifted with an 
ice floe are used in this study, and the corresponding drift track of the meteorological tower and instruments are 
presented in Figure 1.

We conduct the data processing for raw turbulence, including error flag detection, despiking, true wind 
correction, coordinate rotation via double rotation, block averaging over a 30-min interval, and then the 
turbulent fluxes are derived over 30-min periods. To ensure the reliability of eddy-covariance data, we use 
the following data acceptance criteria: no precipitation occurs during the half-hour in question, the dip angle 
of the attitude indicator is smaller than 1°, winds come from angles [0–170°] and [190–360°] relative to 
the  sonic coordinate system, and more than 80% of the 10 Hz data is present for each half-hour. The corre-
sponding data from slow response measurements are averaged every half-hour. No gap-filling is performed 
in this study.

Figure 1.  (a) The drift track and corresponding period of the meteorological tower during the MOSAiC expedition and (b) the instruments installed on the 
meteorological tower.
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2.2.  Conventional Meteorological Conditions

Figure 2 shows the conventional meteorological conditions of daily mean 2-m wind speed (U2m), 2-m air temper-
ature (Ta2m), 2-m relative humidity (RH2m), and precipitation occurrence (P) during the MOSAiC expedition. 
There are about 71 days, which are concentrated in the period from 11 May 2020 to 23 June 2020 and from 30 
July 2020 to 24 August 2020, that are missing due to the transit of Polarstern. From the available data collected 
during the passive drifting period, we conclude that: (a) the mean U2m during the MOSAiC expedition was 
4.2 m s −1, and the monthly mean U2m reached its maximum (minimum) of 5.4 m s −1 (3.3 m s −1) in February 
(July); (b) in the coldest month March, the monthly mean Ta2m was 242.9 K, while the daily mean Ta2m began to 
approach 273.15 K in late June; (c) RH2m showed a significant positive correlation with the variation of Ta2m, so 
it is at its minimum in March and maximum in July (>98%) when the sea-ice surface melted; and (d) there were 
105 days when precipitation occurred during the whole observation period, with most concentrated in autumn 
and spring.

2.3.  Turbulent Parameters

The turbulent parameters used in this study include the turbulent fluxes, the stability parameter, and the local 
intermittent strength of turbulence. The turbulent fluxes are calculated using the eddy-covariance method (named 
EC fluxes hereafter):

𝜏𝜏 = 𝜌𝜌𝜌𝜌∗
2� (1)

SH = 𝑐𝑐𝑝𝑝𝜌𝜌𝑤𝑤
′𝜃𝜃′� (2)

Figure 2.  Meteorological data collected during the MOSAiC expedition. Panels (a–d) are the time series of daily wind speed, air temperature, relative humidity, and 
presence of precipitation, respectively.
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LE = 𝜆𝜆𝜆𝜆𝑤𝑤′𝑞𝑞′� (3)

𝑢𝑢∗ =

(

𝑢𝑢′𝑤𝑤′
2

+ 𝑣𝑣′𝑤𝑤′
2
)1∕4

� (4)

where τ (N m −2), SH (W m −2), and LE (W m −2) are the turbulent momentum flux, sensible heat flux, and latent 
heat flux, respectively, ρ (kg m −3) is the air density, cp (=1,004.7 J kg −1 K −1) is the constant-pressure specific heat 
capacity of air, λ (=2.5 × 10 6 J kg −1) is the latent heat of vapourization, u′ (m s −1), v′ (m s −1), w′ (m s −1), θ′ (K), 
and q′ (kg kg −1) are the turbulent fluctuations of streamwise wind speed, crosswind speed, vertical wind speed, 
potential temperature, and specific humidity, respectively.

The stability parameter used to quantify the stability of atmospheric stratification in this study is the bulk Rich-
ardson number (Rib). It can be derived as follows:

𝑅𝑅𝑅𝑅𝑏𝑏 = 𝑔𝑔𝑣𝑣(𝑧𝑧2 − 𝑧𝑧1)
(𝑇𝑇 𝑇𝑇6𝑚𝑚 − 𝑇𝑇 𝑇𝑇2𝑚𝑚) × 2

(𝑇𝑇 𝑇𝑇6𝑚𝑚 + 𝑇𝑇 𝑇𝑇2𝑚𝑚)(𝑈𝑈6𝑚𝑚 − 𝑈𝑈2𝑚𝑚)
2

� (5)

where, Ta6m (K) and U6m (m s −1) are the air temperature and wind speed collected at the observation height of z2 
(=6 m), and gv = 9.8 m s −2 is the gravity.

The index to quantify the local intermittent strength of turbulence (LIST) in this study is consistent with that of 
Ren, Zhang, Wei, Wu, Cai, et al. (2019):

LIST =
𝑉𝑉turb

√

𝑉𝑉turb
2
+ Vsmeso

2
� (6)

𝑉𝑉turb =

√

𝑢𝑢
′

turb

2
+ 𝑣𝑣

′

turb

2
+𝑤𝑤

′

turb

2� (7)

𝑉𝑉smeso =

√

𝑢𝑢
′

smeso

2
+ 𝑣𝑣

′

smeso

2
+𝑤𝑤

′

smeso

2� (8)

where, Vturb and Vsmeso represent the strength of turbulent and submesoscale motions, respectively. These two 
motions can be separated once a spectral gap is identified between them. It can be seen from Equation 6 that larger 
LIST values approaching the maximum value of 1 indicate the dominance of turbulent components in the acquired 
signal, while smaller LIST values mean greater effects of submesoscale motions and stronger intermittency.

2.4.  A New Algorithm to Identify the Spectral Gap

Compared with the fast Fourier transform and the wavelet transform for spectrum analysis, the Hilbert-Huang 
transform presents notable advantages in processing nonstationary and nonlinear turbulent signals (Wei 
et al., 2017). The location of the spectral gap should be characterized by the significant drop before the spectral 
gap and the relative flat slope after the spectral gap in the second-order Hilbert spectrum. Accordingly, Ren, 
Zhang, Wei, Wu, Cai, et al. (2019) developed an automated algorithm to identify the spectral gap under heavy 
haze pollution conditions based on the second-order Hilbert spectrum analysis by using the data collected over 
urban and suburban surfaces. However, when we use their algorithm to identify the spectral gap over the snow or 
sea-ice surfaces in the Arctic, we find it always fails to identify the spectral gaps that are located at log(ω) > −2.5 
(here ω is the frequency). Because it takes the smallest log(ω·Hs) found in the range of log(ω) < −2.5 as the 
priority (here Hs is the second-order Hilbert spectral value), the algorithm misses the “true” spectral gap if it 
is located at log(ω) > −2.5. In this study, we update the algorithm to identify the spectral gap as follows: (a) 
Decomposing the fluctuation of measured elements (i.e., u′, v′, w′, θ′, q′) during each 30-min period into intrinsic 
model functions (IMF) by using the empirical mode decomposition method (Rilling et al., 2003). (b) Calculating 
the second-order Hilbert spectrum of IMF (Huang et al., 2008). (c) As the submesoscale parts of the spectrum 
should not be located at too high frequencies, the location of the spectral gap is assumed to be at a frequency 
of log(ω) lower than −1.5, the same as in Ren, Zhang, Wei, Wu, Cai, et al. (2019). Accordingly, to identify the 
potential location of the spectral gap, the frequency locations of local minima of ω·Hs across the frequency 
range of log(ω) < −1.5 are labeled. (d) To quantify the abrupt drop of ω·Hs before the frequencies identified in 
step (c), the difference between the present minimum ω·Hs and previous maximum ω·Hs (i.e., ∇log(ω·Hs)) is 
calculated. (e) To ensure the drop of ω·Hs before the spectral gap is significant enough and the slope of log(Hs) 



Journal of Geophysical Research: Atmospheres

LIU ET AL.

10.1029/2023JD038639

6 of 14

(k) after the spectral gap is relative flat, the frequencies with ∇log(ω·Hs) > 0.15 and k < 2 are retained. (f) The 
frequency with the most significant drop of ω·Hs (i.e., the largest ∇log(ω·Hs)) is selected as the location of the 
spectral gap. It should be noted that the thresholds of 0.15 for ∇log(ω·Hs) and 2 for k are determined empirically. 
To derive the optimal values of the thresholds, the samples on the first and fifteenth of each month are picked 
out, and the locations of the spectral gap for these samples are identified by visual inspection. Then, we adjust 
values of the thresholds to make the results from the automatic algorithm agree well with the results from visual 
inspection. Figure 3 gives the flowcharts of Ren, Zhang, Wei, Wu, Cai, et al. (2019)'s algorithm and our updated 
algorithm. Comparing with their algorithm, we introduce the ∇log(ω·Hs) to ensure the characteristics of shape 
decline before the spectral gap and revise the threshold of the slope of log (Hs).

Once the spectral gap is identified, we search for the IMF mode (N) with the mean frequency closest to the 
spectral gap. Then modes 1‒N are chosen to reconstruct the signal of turbulent motions, and the other modes 
are used to reconstruct the submesoscale signal. As in the example shown in Figure 4, it can be found that in the 
inertial sub-range, the spectra of u′, v′, and w′ follow the −5/3 power law well, which indicates the validity of the 
Hilbert-Huang transform for spectral analysis and the high quality of the observational data. For the spectrum of 
u′, Ren, Zhang, Wei, Wu, Cai, et al. (2019)'s algorithm fails to identify the existence of a spectral gap, while our 
algorithm can capture the sharp decline of log(ω·Hs) ahead of the frequency of 0.0045 Hz where the spectral gap 
should exist. The spectrum of reconstructed turbulent motions of u′ is more consistent with the classic spectral 
pattern for turbulence. For the spectra of v′ and w′, our algorithm identifies the location of the spectral gap at 
higher frequencies to obtain a purer reconstructed turbulent signal. In this case, our algorithm also produces 
reasonable frequency locations of the spectral gap for θ′, and q′ (not shown in Figure 4). In fact, the superiority 
of the new algorithm is not only reflected in this example, but also demonstrated by most samples. Hence, we 
conclude that the new algorithm performs better in identifying the spectral gap over the Arctic sea-ice surface.

3.  Results and Discussion
3.1.  Statistical Characteristics of LIST

During the whole observation period, we have 11,383 (11,383, 11,383, 11,505, 5,791) samples of 30-min stream-
wise wind speed (crosswind speed, vertical wind speed, potential temperature, specific humidity) data. The 
proportion of spectral gaps identified in u′, v′, w′, θ′, and q′ is 76%, 82%, 57%, 81%, and 80%, respectively. Thus, 

Figure 3.  The flowcharts of Ren, Zhang, Wei, Wu, Cai, et al. (2019)'s algorithm (a) and the newly developed algorithm in this study (b).
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the occurrence of a spectral gap is common throughout the MOSAiC expedition, which means that the effects of 
nonstationary motions on the collected signal are significant. In addition, our results indicate a higher proportion 
of spectral gaps in u′, v′, w′, θ′, and q′ than reported by Ren, Zhang, Wei, Wu, Cai, et al. (2019) for the heavy 
pollution conditions in Beijing. There are two potential reasons for this difference. One is that the new algorithm 
updates the criteria of spectral gap identification; the other is that the influence of submesoscale motions is 
stronger under the weak turbulence conditions in the Arctic. The high proportion of spectral gaps over the 30-min 
intervals indicates that the 30-min time length conventionally used in the calculation of eddy-correlation fluxes is 
not often suitable in these conditions. The mean frequency of the spectral gap for u′, v′, w′, θ′, and q′ is located 
at 0.0047, 0.0046, 0.0034, 0.0051, and 0.0053 s −1, respectively. Hence, a partial gap between turbulence scales 
and submeso scales occurs at a time scale of 3–5 min, which is consistent with Mahrt (2009). However, van den 
Kroonenberg and Bange (2007) presented gaps at much smaller time scales ranging from a few seconds to tens 
of seconds for the cospectra of the sensible heat flux and latent heat flux by using data collected over sea-ice in 
the Arctic summer.

On the other hand, we find that there are 352 samples wherein no spectral gap occurred in u′, v′, and w′ (i.e., Vsmeso = 0 
and LIST = 1). As shown in Figure 5 (a), the distribution of samples with LIST = 1 in each bin of U2m (with an inter-
val of 1 m s −1 for each bin) is presented. It can be seen that the number of samples (n = 60) in the range of 5 m s −1 
to 6 m s −1 is the largest, while the proportion of cases where LIST = 1 increases with increasing wind speed, which 
means that the probability of pure turbulent motions persisting throughout the 30-min acquired signal is higher under 
strong wind conditions. In addition to U2m, we also investigate the distribution of samples with LIST = 1 under differ-
ent U6m − U2m, Ta6m − Ta2m, and Rib conditions. Our results show that the conditions with a large wind speed gradient, 
small air temperature gradient, and near-neutral stratification are most common for the occurrence of LIST = 1.

Furthermore, Figure  6 demonstrates the relationships between LIST and conventional meteorological condi-
tions. It is clear that LIST increases with the increase of wind speed (Figure 6a), where an inverse trigonometric 
relationship of LIST = 0.23 × (1 + 2.3 × atan(0.8 × U2m)) is found. The mean LIST is 0.6 when U2m < 2 m s −1, 
while it reaches 0.9 when U2m ≥ 2 m s −1. These results suggest that submesoscale motions produce a significant 
effect, and the intermittency is stronger under light wind speed conditions. Based on an analysis of the vertical 
turbulence spectrum, Li et al. (2020) also found that lower wind speed could suppress the large-scale eddies from 

Figure 4.  The second-order Hilbert spectra of three wind speed components u′ (a, b), v′ (c, d), and w′ (e, f) at 09:30 on 10 November 2019. The upper panels show the 
spectra of Hs, while the lower panels show the spectra of ωHs. The magenta and blue dashed lines indicate the locations of the spectral gap identified by Ren, Zhang, 
Wei, Wu, Cai, et al. (2019) and our new algorithm, respectively. The solid black lines are the spectra from raw data, and the solid red lines represent the spectra from 
reconstructed data for pure turbulence according to the spectral gap identified by our new algorithm.
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breaking into small eddies, which resulted in an increased percentage of large-scale eddies under light wind speed 
conditions. There are no obvious relationships between LIST and Ta2m or RH2m, apart from decreased values for 
Ta2m ≤ 233.6 K and RH2m ≤ 68.75%, where there are very few samples (Figures 6b and 6c). Figure 6d presents 
the variation of LIST with wind speed gradient U6m − U2m. It can be seen that the samples are concentrated in 
the range of 0 m s −1 < U6m − U2m ≤ 1.7 m s −1 (n = 10,467), and LIST increases with the increase of wind speed 
gradient in this range. When U6m − U2m > 1.7 m s −1, the LIST value tends to be a constant of 0.97, although with 
relatively few samples. The magnitude of the wind speed gradient reflects the intensity of momentum exchange 
between the surface and atmosphere. Hence, these results indicate that the intermittency is stronger under weaker 
momentum exchange conditions. Similar results can be found in Wei et al. (2018) and Allouche et al. (2022). 
We also investigate the variation of LIST with air temperature gradient Ta6m − Ta2m. As shown in Figure 6e, 
LIST reaches its maximum when Ta6m − Ta2m is close to 0 K, while it reaches its lowest values in the range of 
Ta6m − Ta2m > 1 K (n = 362). Thus, the thermal condition of a large (small) air temperature gradient is favorable 
to submesoscale (turbulent) motions. Finally, the relationship of LIST to Rib is given in Figure 6f. The results 
show that the intermittency under stable stratification (Rib > 0.1) is stronger than that under unstable stratification 
(Rib < –0.1), and the turbulent signal under near-neutral stratification (–0.1 ≤ Rib ≤ 0.1) is the purest. Our results 
showing the dependence of intermittency on Richardson number are the same as reported by previous studies of 
near-surface measurements (e.g., Doran, 2004; Drüe & Heinemann, 2007; Mahrt, 2010).

3.2.  Effects of Intermittency on EC Fluxes

To assess the effects of intermittency on EC fluxes, we compared the EC fluxes derived from raw data to those 
derived from reconstructed data. The fluxes derived from the reconstructed data (i.e., pure turbulent fluctuations) 

Figure 5.  Samples of LIST = 1 under different (a) wind speed, (b) gradient of wind speed, (c) gradient of air temperature, and (d) stability conditions. The red line is 
the number of samples in each bin (scaled to the left y-axis), and the black line is the proportions of LIST = 1 in each bin (scaled to the right y-axis). Noted that only 
the proportions with total samples larger than 50 in a bin are shown in this figure. The bin intervals for U6m − U2m, Ta6m − Ta2m, and Rib are 0.2 m s −1, 0.05 K, and 0.02, 
respectively.
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are referred to as the reconstructed fluxes, and those from the raw data (submesoscale motions are included) are 
referred to as the original fluxes in Figure 7. Overall, the results indicate that the original fluxes are greater than 
the reconstructed ones. Compared with other fluxes, the smallest overestimation of 3% (i.e., the slope of the best-
fit line in the comparison is 0.97) is found for the momentum flux (Figure 7a). The mean difference, defined as | 
original flux − reconstructed flux |/n, for τ is 0.01 N m −2. For the sensible heat flux (Figure 7b), the original flux 
is approximately 10% larger than the reconstructed flux (slope of 0.9) and the mean difference between the orig-
inal SH and the reconstructed SH is 1.5 W m −2. On the other hand, there are 506 samples located in the Beta and 
Delta quadrants (i.e., the original SH and the reconstructed SH show opposite sign) in Figure 7b, which means 
that the intermittency reverses the direction of SH in 4.7% of the samples. The slope of the best-fit line is 0.76 for 
the LE, as Figure 7c shows, which indicates that the LE calculated by the conventional method is overestimated 
by approximately 24%. The overestimation of LE is the most significant in terms of percentage difference. In 
addition, 6% of the LE samples are located in the Beta and Delta quadrants in Figure 7c.

Many previous studies supported the notion that submesoscale motions can strengthen the air-surface exchange 
of momentum, heat, and mass fluxes (Vickers & Mahrt, 2003, 2006; van den Kroonenberg and Bange, 2007; 
Mahrt, 2010; Wei et al., 2018; Ren, Zhang, Wei, Wu, Cai, et al., 2019). For example, in the polar regions, van 
den Kroonenberg and Bange (2007) presented an enhancement of 8% and 16% for the SH and LE by mesoscale 
motions, respectively, based on the analysis of multiresolution cospectra during the ARK-XII summer expedition 
(July-September 1996). Although a different method was used to identify the cospectral gap in their study, they 
similarly reported that quantitatively the effects of nonstationary motions on the LE were more significant than 
that on the SH. Ren, Zhang, Wei, Wu, Cai, et al. (2019) also found overestimation in original fluxes; however, 
they found overestimations of 13%, 12%, and 15% for τ, SH, and LE, respectively. Hence, compared with our 
results, Ren, Zhang, Wei, Wu, Cai, et al. (2019) presented a smaller overestimation for the latent heat flux but a 
larger overestimation for the momentum flux. Submesoscale motions vary significantly under different underly-
ing surface and meteorological conditions (Mahrt, 2010). It is necessary to clarify the dynamics of submesoscale 
flow to explain the different effects of submesoscale motions under different conditions. However, the dynamics 
of submesoscale motions are still not clear. Sorbjan and Czerwinska (2013) considered gravity waves as the main 

Figure 6.  The variation of LIST with (a) U2m, (b) Ta2m, (c) RH2m, (d) U6m − U2m, (e) Ta6m − Ta2m, and (f) Rib. The shaded areas represent the standard deviation, and the 
blue circles indicate that the number of samples in the bin is larger than 50.
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source of submesoscale motions. While Wei et al. (2018) indicated that the wind shear produced by Low-Level 
Jets (LLJs) suppressed submesoscale motions in the near-surface layer. Other dynamics related to submesoscale 
motions such as free-flow stability (Zilitinkevich & Calanca, 2000), solitary waves (Terradellas et al., 2005), and 
low-frequency horizontal wind oscillations (Anfossi et al., 2005) have also been mentioned in previous studies.

3.3.  Effects of the Atmospheric Boundary Layer Structure on Intermittency

3.3.1.  The Role of Low-Level Jets (LLJs)

Figure 8a presents the vertical structure of horizontal wind speed within the boundary layer under different inter-
mittency conditions. The Q1, Q2, …, and Q10 mean the samples of wind profiles located in the bins of the [0 10%], 
[10% 20%], …, and [90% 100%] quantiles of LIST. Thus, there is a decreasing intermittency from Q1 to Q10. From 
the perspective of the entire atmospheric boundary layer, the intermittency increases as the mean wind speed of 
the whole boundary layer decreases, ranging from 11.8 m s −1 in Q10 to 4.9 m s −1 in Q1. Van de Wiel et al. (2012) 
also indicated that continuous turbulence tended to be suppressed under light wind speed conditions in the 

Figure 7.  The comparison of turbulent fluxes derived from raw data and reconstructed data. The red lines are the best-fit lines.
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nocturnal boundary layer. Another notable distinction of wind speed profiles 
under different intermittency strength situations is related to LLJs. To quan-
tify the characteristics of LLJs, a criterion proposed based on the MOSAiC 
radiosondes for LLJ detection is adopted (Lόpez-García et  al., 2022). Our 
results show that LIST is related to the occurrence frequency of LLJs. As the 
occurrence frequency of LLJs decreases, LIST increases gradually. On the 
other hand, strong LLJs generally occur when turbulent motions are strong, 
while weak LLJs correspond to periods of strong intermittency. The mean 
strength of the LLJs in Q1 is only 5.5 m s −1, but this  value reaches up to 
12.0 m s −1 in Q10. Banta et al. (2003) and Mahrt (2014) both concluded that 
the contribution of LLJs is to produce enhanced vertical shear that further 
leads to turbulence production in the surface layer of a stable boundary layer.

3.3.2.  The Role of Temperature Inversions

Figure 9 compares the vertical potential temperature gradient (∂θ/∂z) within 
the atmospheric boundary layer under different intermittency strength condi-
tions. Strong temperature inversions prevail in the boundary layer over the 
Arctic sea-ice surface, especially in winter, indicating that buoyancy's contri-
bution to turbulent motions within the surface layer is negative. Although 

Figure 8.  (a) The vertical structures of wind speed within the atmospheric boundary layer, (b) the frequency of LLJs, and (c) the strength of LLJs under different 
intermittency conditions.

Figure 9.  The vertical potential temperature gradient within the atmospheric 
boundary layer under different intermittency strength conditions.
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there is no conspicuous rule for the variation of vertical potential temperature gradient with intermittency strength 
in the upper level of the boundary layer (above 0.5 km), the vertical structure of potential temperature below 
0.5 km reveals that strong, low-level temperature inversions lead to an increase in intermittency strength. Under 
the strongest intermittency condition (i.e., Q1), the maximum vertical potential temperature gradient reaches 
0.032 K m −1 at the height of 0.09 km; however, the maximum vertical potential temperature gradient is just 
0.021 K m −1 at the height of 0.21 km when LIST is in the Q10 interval. The signal of suppressed turbulence under 
strong inversion situations was also found during the CASES-99 (Cooperative Atmosphere-Surface Exchange 
Study in 1999) experiment (Sun et al., 2012).

4.  Summary
Using the data collected during the MOSAiC expedition, we propose a new algorithm to identify the spectral 
gap between submesoscale and turbulent motions in this study. Based on analysis of the reconstructed signal of 
turbulent and submesoscale motions, the characteristics of turbulent intermittency within the atmospheric surface 
layer over the Arctic sea-ice surface are investigated.

Submesoscale motions significantly affect surface fluxes calculated using the EC method throughout the 
MOSAiC expedition. The relationship between LIST and near-surface conventional meteorological conditions 
reveals that LIST increases with the increase of wind speed and wind speed gradient and with the decrease of the 
air temperature gradient. In addition, our results show that turbulence intermittency under stable stratification 
is stronger than that under unstable stratification, and the turbulence signal under near-neutral stratification is 
the purest. Surface fluxes calculated using the EC method and raw turbulent fluctuations are overestimated. The 
overestimation of momentum flux, sensible heat flux, and latent heat flux is 3%, 10%, and 24%, respectively. 
Hence, nonstationary motions have the greatest relative influence on the latent heat flux over the Arctic sea-ice 
surface, although the latent heat flux in this region is typically small. By investigating the characteristics of 
atmospheric boundary layer structure under different intermittency strength conditions, we found that strong 
LLJs are conducive to turbulence production in the surface layer of the stable boundary layer, while weak LLJs 
correspond to strong turbulence intermittency. Additionally, strong, low-level temperature inversions suppress 
turbulent motions and lead to strong intermittency.

This study reveals the characteristics of turbulent intermittency over the Arctic sea-ice surface during the year-
long MOSAiC expedition. In addition, we provide an automatic algorithm for correcting the impact of nonsta-
tionary motions when calculating surface fluxes via the EC method in the polar regions, although the empirical 
parameters in this algorithm might be site-dependent. Broadly for different sites, the identified empirical param-
eters in the newly proposed automatic algorithm could be tested as to when the resultant turbulent kinetic energy 
in both turbulent signal and submesoscale signal obey a nonlinear Langevin model as suggested by Allouche et al. 
(2021). However, although the effects of submesoscale motions on surface turbulent fluxes have been quantified 
in this study, the mechanism of generation and development of submesoscale motions remains to be clarified. 
To achieve this, we must incorporate large-eddy simulation experiments, and this work will be carried out in the 
future.

Data Availability Statement
The interpolated sounding (Jensen et  al.,  2019) and precipitation (Wang et  al.,  2019) data are available 
from the US Department of Energy Atmospheric Radiation Measurement Program archive at http://dx.doi.
org/10.5439/1095316 and http://dx.doi.org/10.5439/1779709, respectively. The MOSAiC surface flux and other 
meteorological data are available at the Arctic Data Center at http://dx.doi.org/10.18739/A2VM42Z5F (Cox 
et al., 2021) and http://dx.doi.org/10.18739/A2PV6B83F (Cox et al., 2023).
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